QSFP-DD (倍密度) 相互接続システム & ケーブルアセンブリー

OSFP-DD相互接続システムは、8レーンの電気信号インターフェースで構成し、 伝送能力最大28 Gbps NRZまたは56 Gbps PAM-4、8レーン合計では最大 200または400 Gbpsの性能を実現した製品です。OSFP相互接続システムと 同一フットプリントを維持することで下位互換性も備えています。

特徴・利点

28 Gbps NRZおよび56 Gbps PAM-4ケーブルアセンブリー

Temp-Flexケーブルテクノロジー

電気的性能を飛躍的に向上。 製造効率の改善により高い利益率、 リードタイム短縮、エンドユーザー側の

コスト最小化を実現

AWG 32、30ケーブル

最長5.0mであらゆる業界の アプリケーションニーズに 対応。コスト効率と リードタイムを改善

IEEE 802.3bj、InfiniBand EDR、SAS 3.0の各規格に準拠

多様な次世代テクノロジーおよびアプリケーションに対応する

倍密度

高速通信に対応する 2列の拡張パドルカード

使用温度範囲: 20 ~ +85°C

高温環境下でも使用可能

完全一体化設計

コンポーネント (バックシェル、ケーブル、 配線基板) は全てモレックス製。 高品質コンポーネントをコスト効率に優れた 包括的ソリューションで統合

特徴・利点

シートメタル (ステンレス鋼製) EMIケージ (203143、203152、203369、203370、203371、203372シリーズ)

ステンレス鋼製ケージ

銅合金素材よりも優れた堅牢性

QSFP+コネクターと同一形状の 嵌合インターフェースで下位互換性を維持 現行QSFP+

インフラストラクチャを使用可能

ナローエッジカップリング、ブランク型、 成型コンタクト形状、および インサートモールドを使用したカップリング設計 超低挿入損失(止)等 優れた信号整合性(SI)を実現

スタックー体型コネクター & ケージ 2 by 1構成オプションにも対応

プラガブルアプリケーションをサポート

ニッケルメッキヒートシンク モジュールからヒートシンクへの 熱伝導率が向上

QSFP-DD (倍密度) 相互接続システム & ケーブルアセンブリー

特徴・利点

QSFP-DD SMT (202178シリーズ) および スタックー体型コネクター & ケージ (204058シリーズ) 表面実装 (SMT) タイプ (202718シリーズのみ) PCB両面への実装も可能

28 Gbps NRZおよび56 Gbps PAM-4

現行の200ギガビットEthernetやInfiniBand 100ギガビット (EDR) アプリケーションで求められる仕様を上回る伝送能力。 従来の10 Gbps Ethernet、14 Gbps (FDR) InfiniBand および16 Gbpsファイバーチャネルアプリケーションにも対応

メタル製EMIガスケット内蔵 スタック構造の集積型コネクター (171722シリーズ)

優れたEMI遮蔽性能を実現

ナローエッジカップリング、ブランク型、 成型コンタクト形状、および インサートモールドを使用したカップリング設計 最大周波数14 GHz下で0.8 dB未満の超低挿入損失(L) を達成する等、優れた信号整合性(SI)を実現

EMIケージ直下に配置された 0.80mmピッチホストコネクターホットプラグ対応アプリケーションに使用可

アプリケーション

通信機器

サーバー

ルーター

スイッチ

セントラルオフィス

セルラー通信用インフラ

マルチプラットフォームサービスシステム

データネットワーキング機器

サーバー

ストレージ

サーバー

仕様

28 Gbps NRZおよび56 Gbps PAM-4ケーブルアセンブリー

参考情報

梱包形態: 電磁波シールド袋

電気的性能

周波数範囲: 10 MHz ~ 25 GHz

IF帯域幅: TBD 供給電圧: TBD 供給電流: TBD 消費電力: TBD

機械的性能

耐久挿抜回数:

PL1 (パフォーマンスレベル1):
0.38µm 金メッキ: 50回、5年使用時(混合ガス流試験なし)
PL2 (パフォーマンスレベル2):
0.76µm 金メッキ: 250回、10年使用時(14日間混合ガス流試験)

材質

バックシェル: 亜鉛ダイキャストケーブル接続部: ナイロンラッチ: ステンレス鋼ケーブル: 8ペア、100 Ωディファレンシャル、CL2規格対応RoHS: TBD使用温度範囲: TBD 非使用時温度範囲: TBD

QSFP-DD (倍密度) 相互接続システム & ケーブルアセンブリー

仕様

SMTコネクター

参考情報

梱包形態: エンボステーピング ULファイルNo.: TBD CSAファイルNo.: TBD 嵌合相手: 銅ケーブルアセンブリー 倍密度SMTは201591シリーズと嵌合

寸法単位: mm

スタックー体型コネクター & ケージ

参考情報

梱包形態: トレイ ULファイルNo.: TBD 嵌合相手: 銅ケーブルアセンブリー (201591シリーズ) 寸法単位: mm

機械的性能

嵌合力: 0.75N (1極あたり) 抜去力: 0.25N (1極あたり) 耐久挿抜回数: 100回 (0.76µm金メッキの場合)

EMIシート - メタルケージ

参考情報

梱包形態: トレイ & ボックス 嵌合相手: QSFP+ケーブルアセンブリー (74757、111040シリーズ) QSFP+ ループバックアダプター (74763シリーズ) zQSFP+ ケーブル (111114シリーズ) QSFP+ 倍密度ケーブルアセンブリー

適合相手: コネクター (202718シリーズ)

(201591シリーズ)

寸法単位: mm

203372

電気的性能

最大定格電圧: 30V 最大定格電流: TBD 接触抵抗: TBD 耐電圧: TBD 絶縁抵抗: TBD

機械的性能

ハウジングの端子保持力: TBD 嵌合力: TBD 抜去力:TBD 耐久插抜回数: TBD

雷氨的性能

絶縁抵抗: TBD

最大定格電圧: 30V 最大定格電流: 0.5A、電源コンタクト: TBD 接触抵抗: TBD 耐電圧: TBD

材質

ハウジング: 耐熱性プラスチック ガラス充填、UL 94V-0、黒 コンタクト: 銅合金 メッキ: コンタクトエリア: 0.76µm 金 半田付け部: 錫 下地メッキ: ニッケル RoHS: 申請中

使用温度範囲: TBD

材質 ハウジング: 耐熱性プラスチック ガラス充填、UL 94V-0、黒 コンタクト: 銅合金 メッキ: コンタクトエリア: 0.76µm 金 テールエリア:錫/鉛 下地メッキ: ニッケル RoHS: 準拠 (適用除外による) 使用温度範囲: TBD

機械的性能

耐久挿抜回数: 基板挿入

1 by 1 嵌合力: TBD 1 by 1 抜去力: TBD 1 by 6 嵌合力: TBD 1 by 6 抜去力: TBD

材質

メッキ: ニッケル シートメタル: ステンレス鋼 ヒートシンク: アルミニウム ヒートシンク仕上げ: ニッケル 使用温度範囲: TBD

オーダーインフォメーション

シリーズ番号	コンポーネント	ポート構成	列数	Poles
203143	- - EMIケージ	1 by 1	1列	5-Poles電源
203152		1 by 2		
203369		1 by 3		
203370		1 by 4		
203371		1 by 5		
203372		1 by 6		

シリーズ番号	コンポーネント		
<u>204058</u>	スタック型ケージ		
202718	SMTコネクター		

www.molex.com/link/qsfpdd.html www.japanese.molex.com/link/qsfpdd.html